Chatham County Sea Level Rise Study

September 14, 2021

THE INSTITUTE FOR WATER AND ENVIRONMENTAL RESILIENCE STETSON DIMENSITY Presentation By: Courtney Reich, AICP, CFM Goodwyn Mills & Cawood

COASTAL RESOURCES DIVISION

2 MAIN CAUSES OF RISING SEA LEVELS

Historic Sea Levels

How will climate change increase our vulnerability and risk?

Historical Sea-Level Rise Trend

Current Trend: Approximately 1 foot rise in sea level over 100 years

... but rate of rise is accelerating

Year	SLR
Range	Rate
1940-	0.85 ft /
1979	100 yr
1980-	1.48 ft /
2020	100 yr

Sea Level Rise Projection

The Impacts How will Sea Level Rise affect us?

Tidal Flooding

9/12/2021

ArcGIS - Georgia Coastal Hazards Portal

SKIO Viewer

Savannah Area GIS, Esri, HERE, Garmin, USGS, NGA, EPA, USDA, NPS | Dr. Clark Alexander

Erosion

Drainage System Impacts

Drainage System Impacts

RE 4.6: STORMWATER DRAIN WITH SALTWATER DISCHARGE IER FLOODING OF YARDS AND STREETS FROM STORMWATER DRAIN DISCHARGE DURING K

Sunny Day Road Flooding

Projected days of future flooding with sea level rise at Fort Pulaski,GA

Drainage System Impacts

Drainage System Impacts

STORM FLOODING STORM WATER SEWER

What Can the County Do?

Prepare and Adapt

Disaster Response and Redevelopment Plan

1. Understand Vulnerabilities

Drainage Infrastructure Condition Assessment

2. Mitigate Risk

3. Plan forResponse &Recovery

Hazard Mitigation Plan

Floodplain Management – Building/Freeboard Requirements

Sea Level Rise Study

1. Understand Vulnerabilities

2. Mitigate Risk

3. Plan forResponse &Recovery

Disaster Response and Redevelopment Plan

Drainage Infrastructure Condition Assessment

Hazard Mitigation Plan

Floodplain Management – Building/Freeboard Requirements

Sea Level Rise Study

Project Funding

Coastal Incentive Grant from Coastal Resources Division, GA DNR

Phase 1 : October 2018 – March 2020 Phase 2 : August 2020 – September 2021

Grant Manger: Chatham County Engineering Department

Grant Partners: City of Savannah, Stetson University, Coastal GA CRS Users Group

Phase 1 Project Goals

Assess	Assess impacts of sea level rise (SLR) on stormwater infrastructure and critical facilities
Perform	Perform study in accordance with ISO/CRS for CRS Class 4.
Identify	Identify potential best management practices to address vulnerable drainage systems.
Update	Update drainage Capital Improvement Program (CIP) based on the results from this study

Phase 2 Project Goals

Update	Update SLR model to include mitigation measures such as pump stations & tide gates.
Identify	Identify opportunities for Nature Based Solutions (Green Infrastructure) upstream of vulnerable stormwater systems.
Assess	Assess the vulnerability of roadways in the County to SLR.
Research	Research best practices for tide gates to mitigate SLR impacts to stormwater systems.

Stormwater System Vulnerability & GI/LID

Sea-Level Rise Projections versus Ft. Pulaski tide gauge since 1992

Ft. Pulaski Tide Gauge Record and Sea-Level Rise Projections January 1992 - July 2021, 12-month Rolling Average

DNR High 6.56 ft @ 2100 NOAA Intermediate High 6.4 ft @ 2100

0.0

GI/LID Assessment

- Vulnerable Infrastructure
- Publicly-owned property
- ♦ Soils appropriate for GI/LID

Jacob G Smith Elementary School Green Infrastructure Retrofit

Savannah looks to fix flooding issues

The city of Savannah has received a federal grant to implement flood mitigation tactics in neighborhoods

Sean Compton

Roadway Vulnerability Analysis

Chatham County Road Vulnerability

enterline Data Analysis • Centerline Data with DOT classifications • LIDAR (2009) • Sea Level Rise Projections 2020, 2050, 2075, and 2100

2020, 2050, 2075 and 2100 (DNR high)

Sunny day flooding only

Storm surge is not considered

TIDE GATES BEST PRACTICES FOR COASTAL GEORGIA

Chatham County, Georgia Draft: June, 2021

TIDE GATE GUIDANCE

Tide Flex "Duckbill" Check Valves

Recommended Maintenance Semi-Annual

Pros	Cons
Very durable and reliable; simple operation	The device is virtually water-tight and does not allow any backflow for tidal flushing
No Leakage inflow; debris will not prevent gate from closing	Does not open very wide under low flow and only passes very small floating debris
Silent; no slamming.	Manual removal of debris is very difficult
Unaffected by rust, freeze, corrosion, or lack of lubrication	Head loss at this type of valve may be unacceptable
Negligible maintenance and repairs needed	Rodents (muskrats) have been reported to chew on the tide gate
	Accumulated debris may have to be removed periodically

Recommendations

- 1. Participate in the Georgia Tech Smart Sea Level Sensors Project
- 2. Include SLR projections as a design consideration for drainage capital projects and other critical facilities
- 3. Upgrade stormwater infrastructure (including pump stations) to maintain functioning at a higher tidewater elevation

Next Steps

Run Road Vulnerability Analysis with updated LIDAR

Establish criteria for prioritizing roads

Install Green Infrastructure

Communication tools

